Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis
نویسندگان
چکیده
منابع مشابه
Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
Reverse electrodialysis allows for the capture of energy from salinity gradients between salt and fresh waters, but potential applications are currently limited to coastal areas and the need for a large number of membrane pairs. Using salt solutions that could be continuously regenerated with waste heat (≥40°C) and conventional technologies would allow much wider applications of salinity-gradie...
متن کاملMethane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack betwee...
متن کاملOptimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.
Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were t...
متن کاملElectric Power Generation with Reverse Electrodialysis
The computer simulation program of a practical scale reverse electrodialysis process has been developed based on the program for saline water electrodialysis. The program is applied to compute the performance of an industrial-scale reverse electrodialysis stack (effective membrane area S = 1 m × 1 m = 1 m2, cell pair number N = 300 pairs). The stack operatingconditions are optimized. Seaw...
متن کاملLocal Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes
A recent work reported a local stability analysis of a thermo-economical model of an irreversible heat engine working under maximum power conditions. That work showed that after small perturbations to the working temperatures, the system decreases exponentially to the steady state characterized by two different relaxation times. This work extends the local stability analysis considering other p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Conversion and Management
سال: 2019
ISSN: 0196-8904
DOI: 10.1016/j.enconman.2019.03.045